The Phase Problem

- Data collection → |F|
- Map calculation requires vector F
 - direction or phase offset
- Phases can not be measured directly

Methods to be covered

- Direct methods - briefly
- Ab initio - skip
- Molecular Replacement
- Isomorphous Replacement
- Multi-wavelength Anomalous Diffraction

Phase determination - Direct Methods

- Statistical interdependence of structure factors
 - $P(u) = f(|F_{21}|, |F_{22}|, \ldots)$
- Apply constraints
 - E.g. atomicity
 - Spheres uniform density
 - Separated by vacuum
- Nobel Prize
 - Hauptman & Karle
- Applies to "small" molecules
 - Salts
 - Organic molecules
 - Small proteins
 - "Shake-N-Bake"
 - Hauptman & Weeks; Sheldrick
 - ~1000 atoms
- Heavy atom "sub-structures"
 - Derivatives
 - SeMet

Overview

- Quickest method
- When related "probe" structure is known
- Requirement
 - Know how to superimpose probe structure
 - On unknown structure
 - In a different unit cell
 - (Before unknown structure is known)
 - How to:
 - Orient - 3 angles - "Rotation Function"
 - Place - 3 position vector components
 - "Translation function"
- Method not without its difficulties

Part 2:

Molecular Replacement
When Related Structure Known
How related must the probe structure be?
- No hard & fast rules - but empirical bottom line
- To get an interpretable map
 - >70% structure needs to be approximated
 - Atoms say w/in 2 Å
- Sometimes can combine probes, sum to >70%
- Difficult to figure orientation / translation
- Methods improving...

Determination of the Orientation
- Patterson synthesis
 - \(P(x) = \sum_h |F_h|^2 \cos(2\pi hx) \)
 - No phases
 - Auto-correlation
 - Vectors between atoms
- Compare
 - Vectors w/in molecule
 - Not between molecules
 - "Self-vectors" shorter
- Patterson depends on molecular orientation

Orientation from Patterson Overlap
- Rotate Probe model coordinates
- Calculate Patterson
- Assess overlap
- Compare to observed Patterson
- Step over 3 angles
- At which orientations are observed and calculated Pattersons well correlated?

Challenges of Rotation Function
- Many solutions look equally good.
- The highest scoring is not always correct
- Correct could be 30th... or worse

Patterson vectors that determine orientation
- Patterson contains
 - Peaks for all molecules
 - Peaks between neighbors - w/in & between unit cells
- Red Patterson peaks are from single molecule

Patterson vectors that determine orientation
- If consider only peaks close to origin
 - More are self peaks (red)
 - Less likely to have spurious solution
 - "Integration radius"
 - Impossible to completely separate
 - Self vs. cross peaks
 - Noise in rotation function
 - Perhaps some spurious solutions

\[
R(C) = \int P(u)P_C(u) du
\]
Care needed with rotation functions
- Most sensitive to...
 - Large reflections - \(|F|^2\)
 - Make sure all large \(F\) have been measured
 - Higher resolution data - say 3 to 5 Å
 - Check that RF not sensitive to exact limits
- Very noisy
 - Rank according to signal / noise
 - Correct solution is often the 5th, sometimes the 30th peak.
 - Continue structure determination with several solutions - which works out best?

Translation functions
- Position w/in unit cell when orientation known
- Greatest challenge of Molecular Replacement
- What position most consistent w/ diffraction data?
- Translation function: \(T(t) = \int P_{1,2}(u,t) P(u) \, du\)
 - \(P_{1,2}\) are Patterson vectors between molecules related by crystal symmetry
 - \(P(u)\) is observed Patterson
- Patterson Correlation, \(\text{Corr}(t) = \frac{\sum_n (F_u^2 - <F_u^2>)(F_{c2}^2 - <F_{c2}^2>)}{\left(\sum_n (F_u^2 - <F_u^2>)^2 \sum_n (F_{c2}^2 - <F_{c2}^2>)^2\right)^{1/2}}\)

Translation Functions are Challenging
- Patterson functions intrinsically noisy
- Translation functions sensitive to exact orientation
 - Slight orientational error \(\Rightarrow\)
 - May miss correct position
- Techniques to improve your chances
 - Combine with other information
 - Packing analysis - molecules overlap?
 - Refine orientation - Patterson correlation function

Solving Molecular Replacement
- Two steps: (a) Orientation (RF); Position (TF)
- Several packages that combine them
 - Explore several possible RF solutions
 - Reduce errors due to differing conventions
- Programs: Phaser (Max. likelihood); AMoRe; GLRF
- Model \(\rightarrow\) \(F_{\text{calc}}\): \((F_{\text{calc}}, \Phi_{\text{calc}})\)
 - Combine w/ data: \((F_{\text{calc}}, \Phi_{\text{calc}}) \rightarrow \text{hybrid map}\)
 - Remodel \(\rightarrow\) better \(\Phi_{\text{calc}}\) \(\rightarrow\) better map \(\rightarrow\) model...
- Success judged by agreement between \(F_{\text{calc}}\) & \(F_{\text{obs}}\)
 - ... and ability to improve it with refinement
 - Expected (new) features in map, e.g. sequence
 - Need for caution

Confusing Names
- Uses Heavy Atoms, but \textit{not} "Heavy Atom Method"
- Adds atoms rather than \textit{replacing} them
 - Historically - based on methods where replaced
 - Isomorphous - protein must remain in same conformation after heavy atoms added
 - or almost so

Part 3: ISOMORPHOUS REPLACEMENT
CLASSIC APPROACH W/O RELATED STRUCTURE
Phase Det. – Isomorphous Replacement
1. Collect "native" data set: |F_P|A
2. Attach heavy atom(s) to protein
3. Collect "derivative" data set: |F_PH|
4. Solve heavy atom positions from (F_PH – F_P)

Heavy Metals
- Few atoms bound
 - Need to be able to solve as small molecule
 - Need to be able to detect
- High atomic number - f^2 = \sum Z^2.
 - Contribution \propto Z^2.
- Hg, Pt, Pb, Au, U...
- > 200 reagents, e.g.: K_2PtCl_4, HgAc_2, p-chloromurcuribenzoic acid, UO_2(NO_3)_2, PbAc_2
 - Try a wide selection
- Covalent binding to 1º amines:
 - K_2PtCl_4, K_2AuCl_4...
 - Charged interaction also possible, e.g. K_2AuCl_2
- Electrostatic binding
 - E.g. PbAc_2, uranyl acetate & carboxylates

Heavy Metal - Chemistry
- Hg binds covalently to Cys
 - Great if works
 - Sometimes reduces essential disulfides
 - Denatures protein
- Covalent binding to 1º amines:
 - K_2PtCl_4, K_2AuCl_4...
- Charged interaction also possible, e.g. K_2AuCl_2
- Electrostatic binding
 - E.g. PbAc_2, uranyl acetate & carboxylates

Why particular reagents may not work
- Conformational change
 - Denaturing
 - Subtle non-isomorphism
- Binds at too many sites (to determine positions)
- No binding sites - reactive sites occluded
- Buffer interactions
 - PtCl_4^{2-}, AuCl_4^{2-} react w/ amino "Good" buffers
 - Reagent precipitated
 - Buffers containing PO_4, SO_4 precipitate Hg^+, Hg^{2+}, Pb^{2+} etc..

Searching for derivatives
- Typically have to test dozens of reagents
 - Sometimes hundreds
 - Each at several concentrations
- Excellent guidelines for efficient searches:
 - Petsko, G. Methods in Enzymology 114
 - Chemical series - try most reactive, then least
 - E.g. PtCl_4^{2-}, AuCl_4^{2-}
 - But... Differ in "hardness", lability
 - Ionic vs. covalent interactions
 - Try examples of "soft" & "hard" species

Derivatives - the bottom line
- Diffraction / phasing power
- Days of work, each test
- Data set
 - Quality of diffraction
 - Are the intensities changed?
 - Determine sites
 - Phases - good enough?
Screening tests – eliminate candidates

- Does it precipitate?
 - Mother liquor - no need to waste protein!
- Does it react?
 - Colored compounds
 - Some change color w/ valency e.g. Pt(II) \(\rightarrow\) Pt(IV)
 - E.g. PtCl\(_4^2-\), AuCl\(_4^2-\)
 - Others - color should concentrate in crystal
 - Non-colored
 - Does overdose crack a crystal?
 - No: probably not reacting
 - Yes: reacting or osmotic shock?
 - Does it change the diffraction pattern?
 - E.g. PtCl\(_4^2-\), AuCl\(_4^2-\)
 - Others – color should concentrate in crystal

How much should the diffraction be changed?

- Maximize heavy atom signal w/o changing protein
- Measure \(\Delta F = \sum |F_{PH} - F_P| / \Sigma F_P\)
 - Above 30% - usually non-isomorphous
 - Below 12% - barely detectable
- Want
 - Small number of binding sites (1 to 6)
 - Complete reaction at these sites
 - Full "occupancy"
 - Check w/ Patterson or Difference Fourier (later)
 - Usually need to optimize concentration, soak time

Frustations of Screening

- Can fail at a number of stages
- Final tests require substantial investment of work
 - Careful preliminary tests!
- May need to try many compounds
- May need to transfer to more favorable buffer
- Will need ~ three derivatives
 - Couple of months \(\rightarrow\) a year or two

From heavy atoms to phases... (overview)

- For each reflection...
- Solve for \(\alpha_P\) by triangulating: \(F_{PH} = F_P + F_H\)
- Need \(\alpha_H\), calculated from positions in unit cell.
- Determination of positions
 - Difference Fourier if preliminary phases
 - Difference Patterson w/o phases

Meaning of the Patterson

- \(P(u) = \int \rho(x)\rho(x-u)dx = \Sigma |F_i|\cos2\pi(hx)\)
- Let \(\rho(x) = 0\), except at atom positions
- \(P(u)\) is zero except when \(x\) & \(x-u\) are atoms
- Peaks in \(P(u)\)
 - When \(u\) is an inter-atomic vector
 - Height = \(\rho(\text{atom1}) \times \rho(\text{atom2}) = Z_1 \times Z_2\)
 - Number = \(N^2\), \(N\) at origin
 - Blurred according to resolution - overlapped
 - Interatomic vectors \(\rightarrow\) solve small structure
 - Large structure - Patterson too complicated
 - Difference Patterson \(|F_{PH} - F_P|\) approx heavy atoms

Patterson \(\rightarrow\) Atom positions: Harker Sections

- Patterson peaks a.k.a. "vectors"
- Crystal symmetry \(\rightarrow\) concentration in planes
- Example 2-fold along b:
 - \((x,y,z) = (-x, y, -z) \rightarrow \text{vector} = (2x, 0, 2z)\)
 - Harker section \((u,v,w) = 0; u=2x; w=2z\)
- Example 2, along b:
 - \((x,y,z) = (-x, y+\frac{1}{2}, -z) \rightarrow \text{vector} = (2x, \frac{1}{2}, 2z)\)
 - Harker section \((u,v,w) = \frac{1}{2}; u=2x; w=2z\)
 1. Search (Harker sections) for peaks
 2. Find \((x,y,z)\) consistent w/ peaks
 - Educated guesswork
 - Systematic computational searches
Difference Pattersons Full of Error

- Crude approximation
 - Heavy atom vectors: $\sum_{h} |F_{PH,h}|^2 \cos 2\pi (hx)$
 - "P" for protein; "PH" for protein + heavy atom
 - Can only calculate: $\sum_{h} (|F_{PH,h}| - |F_{P,h}|)^2 \cos 2\pi (hx)$
 - Many background peaks
 - Small (20%) difference between 2 exptl values
 - Then squaring the difference!
- Very sensitive to
 - Errors in intensity data
 - Missing reflections
 - Some prove intractable

What to do when Patterson insoluble?

- Put aside
- Find another derivative
- Use 2nd derivative to calculate approx phases
- Calculate difference Fourier using 1st derivative amplitudes and 2nd derivative phases
- $p(x) = \frac{1}{V} \sum_{h} (|F_{PH,h}| - |F_{P,h}|) \exp(-2\pi ihx)$
 - Coefficients are not squared - less error
 - N peaks for N sites

Using heavy atom positions...

- From Difference Patterson / Fourier
- Calculate F_H vector = $\sum_{fh} \exp{2\pi i h \cdot x}$
 - W/ measured $|F_P|$ & $|F_{PH}|$ amplitudes
 - Using cosine rule:
 - $|F_{PH}|^2 = |F_P|^2 + |F_H|^2 + 2|F_P||F_{PH}|\cos(\alpha_P - \alpha_H)$
 - $\alpha_P = \alpha_H \pm \cos^{-1}{(|F_{PH}|^2 - |F_P|^2 - |F_H|^2) / 2|F_P||F_{PH}|}$
- Symmetry of cosine: 2 angles have same cosine
- Two phase angles are equally probable
- (Note convention of plotting negative F_{PH})

Single Isomorphous Replacement Phase Ambiguity

- $\alpha_P = \alpha_H \cos^{-1}{(|F_{PH}|^2 - |F_P|^2 - |F_H|^2) / 2|F_P||F_{PH}|}$
 - Symmetry of cosine: 2 angles have same cosine
 - $\alpha_P = \alpha_H \pm \text{something}$
 - Two phase angles are equally probable
 - (Note convention of plotting negative F_{PH})

Multiple Isomorphous Replacement (MIR) to Resolve this Ambiguity

- 2nd derivative w/ heavy atoms in different places
- Different F_H
- Only one solution same for both derivatives
- Or nearly so...

Effect of Errors

- Consider small error in $|F_P|$
 - Changes intersection point
 - Changes protein phase
- Measure particular $|F_P|$
 - "Real" value + random error
 - $P(|F_P|)$ is distribution
 - \Rightarrow Distribution of α_P
 - "Phase probability distribution"
- Remember 2 possible phases
 - \Rightarrow Bi-lobed distribution
 - $P(\alpha)$
Types of Errors
- $|F_P|, |F_{PH}|$ experimental measurement error
- $|F_H|$ if heavy atom model is incomplete/inaccurate
 - Heavy atom refinement methods
 - Maximum Likelihood vs. Least-Squares
- Lack of closure, ε
 - Errors \rightarrow triangle $F_{PH} = F_P + F_H$ should not close
- Other errors contribute to ε
 - Non-isomorphism
 - Protein changed
 - Derivative not protein + heavy atoms

MIR & Phase Probability Distributions
- Each derivative \rightarrow probability distribution
- How to combine the information?

MIR Phase probability distributions
- Derivative 1
- Derivative 2
- Derivative 3...
- Combined by product

Use of Phase Probabilities
- Updated as new phase information added
- Modified according to constraints
 - Non-crystallographic symmetry
 - Solvent flattening, etc.,
- Map calculation
 - One phase for each reflection
 - Which one?

Best & Most Probable phases
- $P(\alpha)$
- α_{best}

Uncertainty in the Best Phase
- More confident of phase if
 - One peak dominates $P(\alpha)$
 - Peak is sharp
- Different reflections may have phases determined w/ more or less confidence
- Can we use this information to give maps of minimal error?
- More emphasis to well-determined reflections.
- Weights - a.k.a. “figure of merit”
MIR - Conclusion

Advantages
- Prior structure not required
- Requires only standard laboratory x-ray equipment
- Errors are random and systematic
- Use other methods when appropriate
- MIR is a robust method of last resort

Disadvantages
- A lot of work
- Large random errors

Part 4: ANOMALOUS DIFFRACTION - MAD PHASING

Anomalous Diffraction
- SIRAS - A way of resolving the phase ambiguity
 - Sometimes
- Multiwavelength Anomalous Diffraction (MAD)
 - Powerful new method for accurate phases

Review - Scattering by a Free Electron.
- Electromagnetic radiation = oscillating field.
- Field accelerates a charged particle with frequency \(\nu \).
- At max (or min) of field, \(E_i \).
 - Force on charged particle is greatest
 - Acceleration is greatest
 - Electron displacement \(\pi/2 \) from \(E_i \).
- The accelerating orbital electron initiates a second electromagnetic wave with 2nd phase change of \(\pi/2 \).

When an Electron is Not Free
- As nucleus becomes larger & more +ve...
- Electrons increasingly tethered
- Scattering from dipoles with natural oscillation frequency \(\nu_n \).
- Compared to a free electron, scattering is
 \[f_n = \frac{\nu^2}{\nu^2 - \nu_n^2 - i \kappa_n \nu} \]
 - Forced, damped oscillator
 - \(\nu = \) frequency of incident radiation
 - Changes magnitude
 - Note also complex
 - Phase lag, dependent on damping constant, \(\kappa_n \)
 - Phase difference (scattered-incident) > 2\(\pi \).

Imaginary component of scattering factors
- \(f \) used more than \(\Delta f \), but also used for \(f + \Delta f \).
 - \(\Delta f \) will be used to avoid confusion
 \[f_{\text{anom}} = f + \Delta f + f' \]

(c) Michael S. Chapman
Effect on Heavy Atom Structure Factors
- Imaginary f'' rotates structure factor anti-clockwise
- $F_{PH}(+h) = F_{PH}(-h)$
- Different directions
- $F_{PH}(+) = F_{PH}(-)$
- Friedel's law breaks
- Can use $|F_{PH}(+)|$, $|F_{PH}(-)|$ as 2 derivatives

Precise Data Needed
- Anomalous scattering is small
 - ~6% for Hg atom & CuK radiation
 - Can increase by changing λ
 - Needs synchrotron source w/ tunable wavelength
 - Precisely measured data to be able to detect anomalous signal

When are Anomalous Effects Significant?
- $f_a = v^2 / (v^2 - v_n^2 - i\kappa v)$
- Limit: $v \gg v_n \Rightarrow f_a = 1$
 - Scattering from free electron
- Limit: $v \ll v_n \Rightarrow f_a = 0$
 - No Scattering
- Significant when $v = v_n$
 - v_n are the absorption edges: K, L ...

Anomalous scattering N^o absorption edge
- Se K edge
- 30 electrons
- Max 30% change

Two Strategies for Phasing with Anomalous Diffraction
With tunable x-ray source
- MAD method
 - Collect at 3 wavelengths
 - Maximize $|\Delta F| - \lambda_1$
 - Maximize $f'' - \lambda_2$
 - Far from edge - λ_3
 - Treat $F(\lambda_2)$ as ~ native
 - No need for another crystal
 - $F(\lambda_2)$, $F(\lambda_3)$ like 2 derivatives

With Fixed wavelength
- SIRAS / MIRAS
 - Collect native + derivative
 - Primary phasing from SIR / MIR
 - Collect both $F(+)$, $F(-)$
 - Differences in $F(\lambda_1)$, $F(\lambda_3)$
 - Supplementary phase information
 - Breaks ambiguity
 - (Determines hand)

Theory - Anomalous Diffraction \Rightarrow Phases
- $\alpha_P(+) = -\alpha_P(-)$
- Correct solutions must be mirror images about the Real axis
- (Dotted line)
A Trick to Simplify
- Plot mirror of \(F_H(-) \)
- Solutions now superimpose

Mirror image changes direction of rotation
- \(f^* \) rotates \(F_H \) anticlockwise
- \(f^*_{\text{mirror}} \) rotates \(F_H \) clockwise

SIRAS
- Resolve phase ambiguity with single derivative
- Based ~ 6% differences between \(F_{PH}(+) \) & \(F_{PH}(-) \)
- Can only be exploited w/ excellent data
- \(\alpha_P(+) \) and \(\alpha_P(-) \)
 - Likely not exactly the same
 - Approximately at best
- Maps rarely interpretable until phases refined

SIRAS & MIRAS
- SIRAS
 - Modest supplement to SIR phasing
- MIRAS
 - Modest supplement to MIR phasing

Multiwavelength Anomalous Diffraction
- MAD Phasing

MAD
- Principles exactly the same as SIRAS
- but... Tune \(\lambda \) to maximize the anomalous effects
- Change \(\lambda \) to mimic isomorphous replacement
 - MIR: Change protein & collect diffraction
 - MAD: Same protein & change wavelength
 - Protein must contain an anomalous scatterer
 - "Derivative" is isomorphous - by definition
 - Eliminate major source of error
 - MAD can \(\Rightarrow \) very precise phases
Anomalous Scatterers

- Natural atom
 - Fe proteins etc.
- Isomorphous atom substitution
 - Lanthanide for Ca++, etc.
 - Se for S
 - Express in bacteria that require Met
- Replacement of Met in media by seleno-Met
 - Expression can be a challenge.
- When all else fails:
 - Make derivative - solve derivative not native

Picking wavelengths

- λ_1 absorption edge
 - ΔF
- λ_2 far from edge
 - Little effect
- $F(\lambda_1) - F(\lambda_2)$:
 - Large change in $|F_H|$ magnitude
 - Little change in direction (f^*)
- λ_3 -- Max f^*
 - Max Bijvoet difference: $||F_{PH(+)}| - |F_{PH(-)}||$

Processing MAD Data

- Start as in SIR - determine heavy atom sites
- Then calculate phases...
- Several methods
 - All fundamentally like MIRAS
 - Where do the magnitudes of $F(\lambda_1)$, $F(\lambda_2)$... intersect?
 - Known Magnitudes and directions for
 - $F_A = F_H$, Δf, f^*

MAD Algorithms

- Hendrickson & Smith - deterministic method
 - Calculate F_A, Δf, f^* from 1st principles
 - Phase determined geometrically
 - 2 wavelengths enough (if no exptl. error)
 - 3rd \to Least squares \to best solution
- Pseudo MIR - pretend each λ is a derivative
 - Statistics through phase probability distributions
- Now -- Maximum likelihood methods
 - SHARP: Maximum likelihood refinement of MIR / MAD parameters (Bricogne & Colleagues)
 - SOLVE / RESOLVE: Maximum likelihood MAD \to auto-building (Terwilliger & Colleagues)

Isomorphism in MAD

- All data from one crystal
 - "Native" + "Derivative"
- Data sets are isomorphous by definition
- Eliminate big source of error in phasing
- Surprising how much one can do w/ a little anomalous signal
 - If perfectly isomorphous

Why’s everyone MAD about MAD

- No derivatives required
 - Seleno-Met expression or metalloprotein
- At most one derivative required
- Most accurate experimental phases possible
- If strong anomalous scatterer
 - Mannose Binding Protein A / Ho$^3+$ (Burling & Brünger)
Phase Determination → Phase Refinement

- Phase determination is approximate
 - Molecular replacement:
 - known model is not unknown structure
 - Isomorphous replacement:
 - Small differences between F_{iso} & F_{p}
 - Assumes heavy metals do not change protein structure
- Phases may need refining
- Maps will have much error

Role of Phase Refinement

- Occasionally, 1st map → good model
- Atomic refinement converges easily
- Little/no need for phase refinement
- Sometimes, 1st map is not interpretable
 - Some can be modeled
 - None can be modeled
 - Phase refinement attempts to improve it

Information that can be used

- Partial model
- Constraint that two identical subunits should have same electron density
 - When not related by crystallographic symmetry
- Map features common to all protein crystals
 - Solvent regions flatter
 - Expected shape of density
 - Histogram of density levels

Density Modification and More

- Averaging, solvent flattening are examples of "Density modification"
- Something gained by merely modifying map
 - Symmetry averaging reduces noise
- More gained by requiring phases to be consistent with the constraint

Phase changes

- Consider:
 - Fourier transform: $F, \phi \rightarrow$ map
 - Inverse transform: map \rightarrow same F, ϕ.
 (Not doing anything)
- Now Consider:
 - Fourier transform: $F, \phi \rightarrow$ map
 - Modify map \rightarrow map' (symmetry, solvent flatten)
 - Inverse transform: map' \rightarrow F, ϕ' (changed)
 - FT again: $F', \phi' \rightarrow$ map
 - Map would fit constraints exactly
 - (But actually, can do a lot better...)
 - Note that both F & ϕ have changed
- Expected ϕ to change
- F was observed – probably should not be changing
Phase combination

- New Regime:
 - Fourier transform: $F, \phi \rightarrow \text{map}$
 - Modify map $\rightarrow \text{map}'$ (symmetry, solvent flatten)
 - Inverse transform: $\text{map}' \rightarrow F', \phi'$ (changed)
 - Discard F'.
 - Use original $|F|$ w/ modified ϕ'.
 - FT: $|F|, \phi' \rightarrow \text{map}''$
 - Fits constraints better than map, but not like map'.
 - Inverse transform again: $\text{map}'' \rightarrow F'', \phi''$.
 - Have further improved the phases.
- Cycle until no further change in phases.

End Point of Phase Refinement

- Map consistent with:
 - Constraints
 - Symmetry, solvent flattening, partial model...
 - Observed amplitudes

Phase Refinement by Density Modification

Constraints that are commonly imposed:
- Solvent flattening / flipping
- (Histogram matching)
- Symmetry averaging

Density modification 1 - Solvent Flattening

- Solvent molecules more motile
 - Smeared at high resolution
 - Solvent regions should be ~ featureless = "flat".
 - Phase errors \rightarrow errors in all parts of map
 - Solvent regions may not start flat
 - How can we change phases to maximize the flatness?

Solvent Flattening B.-C. Wang implementation

- Determine solvent region in map
- Change density to average
- FT-invert map $\rightarrow |F_{\text{map}}|, \phi_{\text{map}}$
- Discard $|F_{\text{map}}|$: Combine ϕ_{map} with $|F_{\text{o}}|, \phi_{\text{experimental}}$
- Calculate a new map
 - Flatter, but not flat
 - Repeat the process

How to determine solvent region -- Premise

- Need to know which areas to flatten.
- Solvent electron density
 - Few features
 - Some density everywhere
 - Low average value
- Protein regions
 - Very High where protein atoms
 - Lower than solvent between protein atoms
 - Average higher than solvent
Determination of Protein-Solvent Boundary

- Wang (1985)
 - User defines "solvent fraction", S.
 - Locally average density
 - Weighted average
 - Smeared over 10Å radius
 - Designate lowest S fraction as solvent

- Leslie (1987)
 - Smearing density is a convolution with weighting function.
 - Scalar product in reciprocal space.
 - Weighting function is centrosymmetric
 - Convolution is scalar multiplication - simple
 - Attenuate |F|'s
 - FT → smeared map
 - Then like Wang (1985)

Solvent Flattening - Summary

- Can be applied to all proteins
- Sometimes ambiguous map → interpretable.

Symmetry Averaging

A powerful form of density modification

Source of the Information - Redundancy!

- Diffraction = continuous molecular transform sampled at lattice points
- ½ information to reconstruct - missing phases
- 2nd crystal:
 - Transform sampled @ different pts.
 - Information to calculate phases
 - in principle
 - Multiple crystals = internal symmetry
 - Multiple copies of molecule in crystal a.u.:
 - Unit cell bigger ⇒ more reflections
 - Same information needed to solve unique part

History

- Reciprocal space methods developed by Rossmann, Blow, Crowther, Main et al., 1960's
- Potential realized when a real-space equivalent was formulated (Bricogne, 1976)
- Slow realization - multiple copies advantageous
 - 1980's: more structures determined w/ NCS
 - 1990's: many determinations w/ multiple crystals

Basic real-space algorithm

- Experimantal Amplitudes
- Initial phases
- Bricogne, 1976
- Weights
- Map
- Modified map
- Back-transformation
- Phases
- Calculated Amplitudes

Recombine?
Averaging Prerequisites
- Initial phases
 - "Envelope" – which part of unit cell to average
 - Orientation of the symmetry
 - Position (origin) about which to rotate
- Usual methods
 - Rotation and Translation functions

Nomenclature
- Due to central importance of Rotation & Translation functions, often see reference to
 - "Phase refinement by Molecular Replacement"
- Confusing - Prefer
 - "Molecular replacement" for
 - use of homologous known structure for phasing
 - "Symmetry averaging" for
 - Use of symmetry redundancy for phase improvement

Envelope defines regions to average
- Average protein w/ same bit of protein
 - Not solvent, some other part of protein...
- General case - define individual protein

The Envelope Challenge
- Requires electron density map
- May start very poor
- Recognizing solvent protein boundary not trivial
 - Solvent flattening methods may help
- Distinguishing proteins near guess-work
- Need enough good guess to start
- Structure determination often blocked by poor starting envelope – envelope definition is often the most challenging step in structure determination.

Automatic Envelope Determination
- Solvent boundary à la B.C. Wang
- Trial & error
 - For each region in map...
 - Apply symmetry operator
 - If density not similar, might not be protein
- Smoothing, Overlap trimming
- Programs use one or more of these tricks
- May be able to improve envelope after some initial cycles of averaging

Current Programs do more
- Rave, DM, Solomon, Squash, Solve/Resolve
 - 2nd generation programs
- Important aspects more & more similar
- User-friendliness, portability
 - Averaging, FT's phase combination all in one program
- Incorporation of:
 - Other density modification, e.g. solvent flattening
 - Multiple crystal forms
 - Sophisticated envelopes
Power of Symmetry Averaging

- Most powerful type of phase refinement.
 - Final maps can be excellent
- Power $\propto \sqrt{\# \text{ equivalents}}$
- Phase Extension
 - Generate phases for reflections that have no phase
 - When many equivalents
 - Phases for reflections near those already phased
 - 1 or 2 lattice units
 - Extend very slowly in resolution

Summary

- Phase refinement is often required to get an interpretable map
- Maps are also improved with phases calculated from a preliminary model, but
 - 1st have to be able to build a model
 - Will consider ϕ_{calc} maps later
- Next workshop – building an initial model